skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Zhang, Aidong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Zhang, Aidong; Rangwala, Huzefa (Ed.)
    Zero-inflated, heavy-tailed spatiotemporal data is common across science and engineering, from climate science to meteorology and seismology. A central modeling objective in such settings is to forecast the intensity, frequency, and timing of extreme and non-extreme events; yet in the context of deep learning, this objective presents several key challenges. First, a deep learning framework applied to such data must unify a mixture of distributions characterizing the zero events, moderate events, and extreme events. Second, the framework must be capable of enforcing parameter constraints across each component of the mixture distribution. Finally, the framework must be flexible enough to accommodate for any changes in the threshold used to define an extreme event after training. To address these challenges, we propose Deep Extreme Mixture Model (DEMM), fusing a deep learning-based hurdle model with extreme value theory to enable point and distribution prediction of zero-inflated, heavy-tailed spatiotemporal variables. The framework enables users to dynamically set a threshold for defining extreme events at inference-time without the need for retraining. We present an extensive experimental analysis applying DEMM to precipitation forecasting, and observe significant improvements in point and distribution prediction. All code is available at https://github.com/andrewmcdonald27/DeepExtremeMixtureModel. 
    more » « less